396 research outputs found

    Charged exciton emission at 1.3 μ\mum from single InAs quantum dots grown by metalorganic chemical vapor deposition

    Full text link
    We have studied the emission properties of self-organized InAs quantum dots (QDs) grown in an InGaAs quantum well by metalorganic chemical vapor deposition. Low-temperature photoluminescence spectroscopy shows emission from single QDs around 1300 nm; we clearly observe the formation of neutral and charged exciton and biexciton states, and we obtain a biexciton binding energy of 3.1 meV. The dots exhibit an s-p shell splitting of approximately 100 meV, indicating strong confinement.Comment: 3 pages, 3 figures, submitted AP

    Pseudospin for Raman D Band in Armchair Graphene Nanoribbons

    Full text link
    By analytically constructing the matrix elements of an electron-phonon interaction for the DD band in the Raman spectra of armchair graphene nanoribbons, we show that pseudospin and momentum conservation result in (i) a DD band consisting of two components, (ii) a DD band Raman intensity that is enhanced only when the polarizations of the incident and scattered light are parallel to the armchair edge, and (iii) the DD band softening/hardening behavior caused by the Kohn anomaly effect is correlated with that of the GG band. Several experiments are mentioned that are relevant to these results. It is also suggested that pseudospin is independent of the boundary condition for the phonon mode, while momentum conservation depends on it.Comment: 25 pages, 5 figure

    Mesoscopic spin confinement during acoustically induced transport

    Full text link
    Long coherence lifetimes of electron spins transported using moving potential dots are shown to result from the mesoscopic confinement of the spin vector. The confinement dimensions required for spin control are governed by the characteristic spin-orbit length of the electron spins, which must be larger than the dimensions of the dot potential. We show that the coherence lifetime of the electron spins is independent of the local carrier densities within each potential dot and that the precession frequency, which is determined by the Dresselhaus contribution to the spin-orbit coupling, can be modified by varying the sample dimensions resulting in predictable changes in the spin-orbit length and, consequently, in the spin coherence lifetime.Comment: 10 pages, 2 figure

    A detection method for latent circadian rhythm sleep-wake disorder

    Get PDF
    Background Individuals with typical circadian rhythm sleep-wake disorders (CRSWDs) have a habitual sleep timing that is desynchronized from social time schedules. However, it is possible to willfully force synchronisation against circadian-driven sleepiness, which causes other sleep problems. This pathology is distinguishable from typical CRSWDs and is referred to here as latent CRSWD (LCRSWD). Conventional diagnostic methods for typical CRSWDs are insufficient for detecting LCRSWD because sufferers have an apparently normal habitual sleep timing. Methods We first evaluated the reliability of circadian phase estimation based on clock gene expression using hair follicles collected at three time points without sleep interruption. Next, to identify detection criteria for LCRSWD, we compared circadian and sleep parameters according to estimated circadian phases, at the group and individual level, between subjects with low and high Pittsburgh Sleep Quality Index (PSQI) scores. To validate the reliability of identified detection criteria, we investigated whether the same subjects could be reproducibly identified at a later date and whether circadian amelioration resulted in sleep improvement. Findings We successfully validated the reliability of circadian phase estimation at three time points and identified potential detection criteria for individuals with LCRSWD attributed to delayed circadian-driven sleepiness. In particular, a criterion based on the interval between the times of the estimated circadian phase of clock gene expression and getting out of bed on work or school days was promising. We also successfully confirmed the reproducibility of candidate screening and sleep improvement by circadian amelioration, supporting the reliability of the detection criteria. Interpretation Although several limitations remain, our present study demonstrates a promising prototype of a detection method for LCRSWD attributed to delayed circadian-driven sleepiness. More extensive trials are needed to further validate this method

    A numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel

    Full text link
    We investigate the propagation of a piezoelectric surface acoustic wave (SAW) across a GaAs/AlX_XGa1−X_{1-X}As heterostructure surface, on which there is fixed a metallic split-gate. Our method is based on a finite element formulation of the underlying equations of motion, and is performed in three-dimensions fully incorporating the geometry and material composition of the substrate and gates. We demonstrate attenuation of the SAW amplitude as a result of the presence of both mechanical and electrical gates on the surface. We show that the incorporation of a simple model for the screening by the two-dimensional electron gas (2DEG), results in a total electric potential modulation that suggests a mechanism for the capture and release of electrons by the SAW. Our simulations suggest the absence of any significant turbulence in the SAW motion which could hamper the operation of SAW based quantum devices of a more complex geometry.Comment: 8 pages, 8 figure

    Spin diffusion and injection in semiconductor structures: Electric field effects

    Full text link
    In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS+^+) at the FM interface, thus FM/NS+^+/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors
    • …
    corecore